
Netcool/OMNIbus ObjectServer Gateway
Version 7 Release 4

Reference Guide

SC14-7531-00

���

Netcool/OMNIbus ObjectServer Gateway
Version 7 Release 4

Reference Guide

SC14-7531-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 51.

Edition notice

This edition applies to version 7 release 4 of IBM Tivoli Netcool/OMNIbus ObjectServer Gateway (product number
5724-S44) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1996, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. ObjectServer Gateways . . . 1
Bidirectional ObjectServer Gateways 1

Unidirectional ObjectServer Gateways 3
Running ObjectServer Gateways 3

Chapter 2. Configuring ObjectServer
Gateway properties 5
Controlling the size of the cache 5
Setting the level of debug messages 6
Checking whether the gateway runs under process
control 6
Changing the buffer size 7
Changing the authentication mechanism 7
Connecting to secure ObjectServers 8
Resynchronizing security data with secure
ObjectServers 8
Configuring failback operations 8

Configuring failback operations for unidirectional
ObjectServer Gateways 9
Configuring failback operations for bidirectional
ObjectServer Gateways 10

Configuring store-and-forward operations 11
Configuring store-and-forward operations for
unidirectional ObjectServer Gateways. 11
Configuring store-and-forward operations for
bidirectional ObjectServer Gateways 11

Configuring resynchronization 12
Configuring resynchronization for unidirectional
ObjectServer Gateways 12

Configuring resynchronization for bidirectional
ObjectServer Gateways 13

Generic ObjectServer Gateway properties 16
Unidirectional gateway properties 19
Bidirectional gateway properties 25

Chapter 3. ObjectServer Gateway
mapping 33
Mapping attributes 34
Example mapping 35

Chapter 4. Additional gateway runtime
commands 41
GET CONFIG 41
SHOW PROPS 42
FAILOVER SYNCH. 42
SET LOG LEVEL 42

Chapter 5. Table replication definition
file 45
Effects of delete forwarding on memory size . . . 47
Example table replication definition file 48

Notices 51
Trademarks 53

Index 55

© Copyright IBM Corp. 1996, 2012 iii

iv IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Chapter 1. ObjectServer Gateways

Use ObjectServer Gateways to replicate alerts and other data between
ObjectServers. ObjectServer Gateways help you to improve the reliability and
increase the scalability of your system. You can improve reliability by maintaining
backup ObjectServers, and increase the scalability by establishing a multiered
configuration.

ObjectServer Gateways can be unidirectional or bidirectional. ObjectServer
Gateways consist of readers and writers. Readers extract alerts from a source
ObjectServer. Writers send the alert data to a target ObjectServer.

The ObjectServer Gateway is installed with the Tivoli Netcool/OMNIbus
installation package.

ObjectServer Gateways can replicate the data in any table between ObjectServers.
Details of the tables to be replicated are stored in the table replication definition
file and the map definition file.

You can improve the reliability of your system by setting up a pair of
ObjectServers that are connected by a bidirectional gateway. All clients, except the
bidirectional gateway, connect to the primary ObjectServer. The backup
ObjectServer acts as a standby, and is kept up to date by the bidirectional gateway.

In a multitiered configuration, ObjectServer Gateways function as follows:
v Each collection layer ObjectServer has its own dedicated unidirectional

ObjectServer Gateway that connects the ObjectServer to the aggregation layer.
v The aggregation layer includes one pair of ObjectServers that is connected by a

bidirectional ObjectServer Gateway to keep them synchronized. The bidirectional
ObjectServer Gateway runs on the backup host.

v Each display layer ObjectServer has its own dedicated unidirectional
ObjectServer Gateway that connects the ObjectServer to the aggregation layer.
Each display gateway reader connects to the virtual aggregation pair whereas
each gateway writer connects, and is fixed, to its dedicated display ObjectServer.
Therefore, although the readers can fail over and fail back between the primary
and backup aggregation layer ObjectServers, the writer stays connected only to
its dedicated display ObjectServer. (These gateway connections are the opposite
of the gateway connections in the collection layer.)

For more information about configuring the multitiered architecture, see the IBM
Tivoli Netcool/OMNIbus Installation and Deployment Guide.

Bidirectional ObjectServer Gateways
The bidirectional ObjectServer Gateway enables alerts to flow in both directions
between two ObjectServers. You can use bidirectional gateways to create a failover
pair of ObjectServers. The executable file name of a bidirectional ObjectServer
gateway is nco_g_objserv_bi.

Changes in one ObjectServer are replicated in the other ObjectServer. This
replication ensures that both ObjectServers contain the same alerts and allows you
to maintain a backup ObjectServer.

© Copyright IBM Corp. 1996, 2012 1

Important: Ensure that table data is changed in only one of the ObjectServers. If
table data is changed in both ObjectServers, the gateway might not be able to
reconcile the changes and the row data might be left in an indeterminate state. The
configuration setup for a failover pair of ObjectServers ensures that only data in
the primary ObjectServer is changed, except when the system fails over to the
backup ObjectServer. For more information about failover, see the IBM Tivoli
Netcool/OMNIbus Installation and Deployment Guide.

Information flow

The following figure shows the structure of a bidirectional ObjectServer Gateway.

The bidirectional gateway consists of a mapper and two reader/writer components
(one for each ObjectServer). The flow of information between the components is as
follows:

�1�: The reader reads data from one ObjectServer.
�2�: The data is passed to the gateway mapper.
�3�: The mapper transforms the data into a format that is appropriate for the
second ObjectServer. To transform the data, the mapper uses the settings in the
map definition file.
�4�: The mapper passes the data to the reader.
�5�: The writer writes the data to the second ObjectServer.

Related tasks:
“Configuring failback operations” on page 8

Figure 1. Bidirectional ObjectServer Gateway

2 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Unidirectional ObjectServer Gateways
The unidirectional ObjectServer Gateway enables alerts to flow in one direction,
from a source ObjectServer to a destination ObjectServer. The executable file name
of a unidirectional ObjectServer gateway is nco_g_objserv_uni.

Changes made in the source ObjectServer are reflected in the destination
ObjectServer, but changes in the destination ObjectServer are not reflected in the
source ObjectServer.

Information flow

The following figure shows the structure of a unidirectional ObjectServer Gateway.

The unidirectional gateway is comprised of mapper, reader, and writer
components. The flow of information between the components is as follows:

�1�: The gateway reader reads data from the source ObjectServer, NCOMS1.
�2�: The data is passed to the gateway mapper.
�3�: The data is mapped from the tables and columns of the source
ObjectServer to those in the target ObjectServer, based on the settings in the
map definition file.
�4�: The mapper passes the data to the gateway writer.
�5�: The writer writes the data to the target ObjectServer, NCOMS2.

Running ObjectServer Gateways
After you configured the gateway, you can issue the command to start it.
v To start a bidirectional gateway, enter the following command: nco_g_objserv_bi

-name, where name is the name of the gateway.
v To start a unidirectional gateway, enter the following command:

nco_g_objserv_uni -name, where name is the name of the gateway.

Figure 2. Unidirectional ObjectServer Gateway

Chapter 1. ObjectServer Gateways 3

4 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Chapter 2. Configuring ObjectServer Gateway properties

To define the operational environment of the gateway, such as connection details
and the location of the other configuration files, set the properties in the properties
file. This is a text file that contains a set of properties and their corresponding
values.

By default, the ObjectServer Gateway reads the properties file from the
$OMNIHOME/etc/NCO_GATE.props file. You can use the -name command-line option to
rename this file, or the -propsfile option to instruct the gateway to read a
different properties file. Sample, writeable properties files are provided at
$NCHOME/omnibus/gates/objserv_uni/objserv_uni.props for unidirectional
gateways and $NCHOME/omnibus/gates/objserv_bi/objserv_bi.props for
bidirectional gateways.

For information about the common properties and Interprocess Control (IPC), see
the IBM Tivoli Netcool/OMNIbus Administration Guide.

Most configuration tasks are identical for unidirectional gateways and bidirectional
gateways. However, if a configuration task requires different properties to be set,
depending on whether the gateway is unidirectional or bidirectional, the tasks are
described separately, for example setting up failback operations.

After you edit the properties file, restart the gateway so that the changes take
effect.

The standard multitiered architecture includes sample configurations, including
properties file, for gateways at the collection layer, aggregation layer, and display
layer. These configurations are in $NCHOME/omnibus/extensions/multitier/gateway.
For example, $NCHOME/omnibus/extensions/multitier/gateway/AGG_GATE contains
configuration for an aggregation layer ObjectServer that can be deployed when
you run a single primary ObjectServer to a backup ObjectServer.

Controlling the size of the cache
The gateway uses a cache to store details of tables that require transferring from
one ObjectServer to another. Change the size of the cache if the ObjectServer to
which the gateway is linked handles large numbers of events.

The main function of the cache is to facilitate journal and details table insert
operations. When a journal or detail is forwarded for insertion into a target
ObjectServer, the gateway writer needs to know the corresponding status serial in
the target ObjectServer. This information is found in the cache. The cache is also
used for any other tables that are specified in the table replication definition table.

The cache increases performance by providing the gateway with an in-memory
summarized view of the contents of the ObjectServers to which it is linked. As a
result, the gateway does not have to query an ObjectServer to check for the
existence of an event, or the Serial or Tally of an event. Instead, it can check the
cache of the ObjectServer.

© Copyright IBM Corp. 1996, 2012 5

The cache is implemented by a hash table. Performance decreases if the number of
rows in the ObjectServer status table is many times the number of entries in the
hash table.

To control the size of the hash table cache, change the value of the
Gate.CacheHashTblSize property. The default is 5023 elements, or rows. If a status
table has many rows, for example, over 20,000, increase the number. For efficiency,
specify a value that is a prime number.

What to do next

After you edited the properties file, restart the gateway.
Related reference:
“Bidirectional gateway properties” on page 25
“Unidirectional gateway properties” on page 19

Setting the level of debug messages
You can troubleshoot problems with the gateway by consulting error messages.
The gateway has configurable error handling, which is provided by the
Netcool/OMNIbus Gateway Toolkit (NGTK) library. You can specify which
messages are included in the debug files.
1. To specify that the NGTK library logs debug messages, set the Gate.NGtkDebug

property to TRUE.
2. To specify which debug messages are included in the debug files, set the

following properties to TRUE or FALSE, as required:
v Gate.Mapper.Debug

v Gate.ObjectServerB.Debug

v Gate.ObjectServerA.Debug

What to do next

After you edit the properties file, restart the gateway.
Related reference:
“Bidirectional gateway properties” on page 25
“Unidirectional gateway properties” on page 19

Checking whether the gateway runs under process control
The gateway can be put under Process Agent (PA) control, in which case, the PA
specifies how the gateway runs. You can check whether a gateway is under PA
control by checking the gateway properties.

To check whether a gateway is under PA control:
v To check whether the gateway is PA aware, check the value of the Gate.PAAware

property. If the property is set to 0, the gateway is not PA aware.
v For the name of the PA agent that is running the gateway, check the value of the

Gate.PAAwareName property

Important: Do not change these properties in the gateway properties file. These
properties are maintained automatically by the PA server and provide information

6 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

only.
For more information about PA control, see the IBM Tivoli Netcool/OMNIbus
Administration Guide.
Related reference:
“Bidirectional gateway properties” on page 25
“Unidirectional gateway properties” on page 19

Changing the buffer size
The buffer size controls the number of entries that the gateway stores in its buffer
before flushing them to the ObjectServer. The optimum value for the buffer size
depends on the average event size and the speed of the network. The default
buffer size is often sufficient. To reduce latency, you can adjust the buffer size.

The gateway uses separate buffers for the source and destination ObjectServers

You can adjust the buffer size as follows:
1. To determine the most efficient setting for your system, keep a record of the

time that it takes for resynchronization operations to complete. Then, change
the resynchronization properties and resynchronize again, and compare the
timing figures. Repeat as required.

2. To change the buffer size for the source and destination ObjectServer, change
the values of the following properties accordingly:
v Gate.ObjectServerA.Buffersize

v Gate.ObjectServerB.Buffersize

What to do next

After you edi the properties file, restart the gateway.
Related tasks:
“Configuring resynchronization” on page 12
Related reference:
“Bidirectional gateway properties” on page 25
“Unidirectional gateway properties” on page 19

Changing the authentication mechanism
The gateway supports standard UNIX authentication or Pluggable Authentication
Modules (PAM) authentication. Standard UNIX authentication is the default. PAM
authentication is required to run the gateway in FIPS 140-2 mode.

For more information about authentication, see the IBM Tivoli Netcool/OMNIbus
Installation and Deployment Guide.

To change the authentication mechanism to PAM, set the Gate.UsePamAuth to TRUE.

What to do next
1. Configure Tivoli Netcool/OMNIbus to use PAM for external authentication.

The service names are nco_g_objserv_uni and nco_g_objserv_bi. Both have the
module type account. For more information about the configuration for PAM,
see the IBM Tivoli Netcool/OMNIbus Installation and Deployment Guide.

2. Restart the gateway.

Chapter 2. Configuring properties 7

Related reference:
“Bidirectional gateway properties” on page 25
“Unidirectional gateway properties” on page 19

Connecting to secure ObjectServers
When an ObjectServer is running in secure mode, the gateway must make its
connection either as a known ObjectServer user or as the root user. The user must
have permission to access the tables that are being replicated, and also some of the
system tables. The default ObjectServer configuration includes a group that is
called Gateway, which has the required permissions.

For more information about running the ObjectServer is secure mode, see the IBM
Tivoli Netcool/OMNIbus Administration Guide.
Related reference:
“Bidirectional gateway properties” on page 25
“Unidirectional gateway properties” on page 19

Resynchronizing security data with secure ObjectServers
If you want to resynchronize security data when the ObjectServers are running in
secure mode, run the gateway as the root user. If you do not, when you attempt to
resynchronize, the gateway quits and no security data is transferred to the
destination ObjectServer.

No security data is transferred because the gateway deletes the destination
permissions and so cannot insert rows copied from the source table. If you run the
gateway as the root user, this problem is overcome, because no permissions need
to be set explicitly. For more information, about the ObjectServer, see IBM Tivoli
Netcool/OMNIbus Administration Guide.
Related reference:
“Bidirectional gateway properties” on page 25
“Unidirectional gateway properties” on page 19

Configuring failback operations
Use the gateway properties to configure how a backup ObjectServer fails back to a
primary ObjectServer after the primary ObjectServer is restored. If the failback
function is enabled, when the connection to the primary ObjectServer is lost, the
gateway connects to the backup ObjectServer. When the primary ObjectServer
becomes active, the gateway reconnects to it.

Important: Although you can use ObjectServer Gateways to control failback, to
minimize event loss, client failback behavior must be controlled by a failover pair
of ObjectServers instead of the clients themselves. Event loss can occur if clients
fail back to a primary ObjectServer before resynchronization is completed.

8 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Configuring failback operations for unidirectional
ObjectServer Gateways

Two ObjectServers can be set up as a pair, with one acting as the primary and the
other as the backup. You can specify how the backup ObjectServer fails back to the
primary ObjectServer.

These instructions are applicable only to gateway readers or writers that connect to
a virtual ObjectServer pair.
1. In the backup ObjectServer, set the BackupObjectServer property to TRUE and

restart the ObjectServer, if required.
2. In the gateway properties file, set the Gate.Reader.Failback property and/or

the Gate.Writer.Failback property to TRUE.
3. To specify the frequency with which the reader and writer parts of the gateway

poll the failed primary ObjectServer, set the Gate.Reader.FailbackTimeout
and/or Gate.Writer.FailbackTimeout properties.

4. To specify the Object Server pairs, set the Gate.ObjectServerA.Server property
and the Gate.ObjectServerB.Server property to the virtual Object Server name.

Results

When the primary ObjectServer fails, the reader and writer fail over to the backup
ObjectServer without shutting down. When the reader or writer detects that they
are now connected to a backup ObjectServer, they periodically poll for the return
of the primary ObjectServer. When the primary ObjectServer is detected again, the
reader or writer automatically fails back to the primary ObjectServer.

Example

The following figure shows an example unidirectional gateway failback
configuration.

Typically, in a multitiered architecture, the collection layer has a single ObjectServer
as the reader and a pair of ObjectServers as the writer. The aggregation layer has a
pair of ObjectServers as the reader and the writer. The display layer has a single
ObjectServer as the writer and a pair of ObjectServers as the reader.

What to do next

After you edit the properties file, restart the gateway.

Figure 3. Configuration of failback for unidirectional ObjectServer Gateways

Chapter 2. Configuring properties 9

Configuring failback operations for bidirectional ObjectServer
Gateways

Provided that data is changed in only one ObjectServer in a virtual pair, you can
set up a bidirectional gateway for failback operations. The operation is the same as
for a unidirectional gateway, but you need to configure different properties.

Restriction: Failback does not occur when the bidirectional gateway connects to an
ObjectServer that is not in a virtual pair. For example, if you are using a
bidirectional gateway to maintain a backup ObjectServer, failback does not occur.

To configure failback operations:
1. In the backup ObjectServer, set the BackupObjectServer property to TRUE and

restart the ObjectServer, if required.
2. Set the following properties in the gateway properties file.

v If ObjectServer A has a backup ObjectServer, set the
Gate.ObjectServerA.Failback property to TRUE.

v If ObjectServer B has a backup ObjectServer, set the
ObjectServerGate.ObjectServerB.Failback property to TRUE

3. To specify the frequency with which the gateway polls the failed ObjectServer,
set the Gate.ObjectServerA.FailbackTimeout and
Gate.ObjectServerB.FailbackTimeout properties.

4. To specify the Object Server pairs, set the Gate.ObjectServerA.Server property
and the Gate.ObjectServerB.Server property to the virtual Object Server name.

Results

When the primary ObjectServer fails, the gateway fails over to the backup
ObjectServer without shutting down. When the gateway is connected to a backup
ObjectServer, it periodically polls for the return of the primary ObjectServer. When
the primary ObjectServer is detected again, the gateway automatically fails back to
the primary ObjectServer.

Example

The following figure shows a sample failback operation for a bidirectional gateway.

What to do next

After you edit the properties file, restart the gateway.

ObjectServer
Gateway

Primary
ObjectServer

Backup
ObjectServer

F
a
ilo

v
e
r F

a
ilb

a
c
k Primary

ObjectServer

Backup
ObjectServer

F
a
ilo

v
e
r F

a
ilb

a
c
k

Figure 4. Bidirectional ObjectServer Gateway

10 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Configuring store-and-forward operations
You can configure bidirectional and unidirectional gateways to store and forward
the data of replicated tables if the destination ObjectServer goes offline.

Configuring store-and-forward operations for unidirectional
ObjectServer Gateways

Unidirectional gateways store and forward on any table when the destination
ObjectServer goes offline. You can configure the gateway to store and forward
either all or none of the tables that are replicated.

To configure the store-and-forward function:
1. Set the Gate.Writer.SAF property to TRUE.
2. To specify the file to which alerts are written while the destination ObjectServer

is offline, set the Gate.Writer.SAFFile property.
3. Restart the gateway.

What to do next

To deactivate the store and forward function, set the Gate.Writer.SAF property to
FALSE and restart the gateway.
Related reference:
“Bidirectional gateway properties” on page 25
“Unidirectional gateway properties” on page 19

Configuring store-and-forward operations for bidirectional
ObjectServer Gateways

The gateway supports store and forward on any table when the destination
ObjectServer goes offline. You can configure the gateway to store and forward
either all or none of the tables that are replicated.
1. To configure the store-and-forward function for ObjectServer A:

a. Set the Gate.ObjectServerA.SAF property to TRUE.
b. To specify the file to which alerts are written while the destination

ObjectServer is offline, set the Gate.ObjectServerA.SAFFile property
2. To configure the store-and-forward function for ObjectServer B:

a. Set the Gate.ObjectServerB.SAF property to TRUE.
b. To specify the file to which alerts are written while the destination

ObjectServer is offline, set the Gate.ObjectServerB.SAFFile property
3. After you reset the properties, restart the gateway.

What to do next

To deactivate the store and forward function, set the GateObjectServerA.SAF
property to FALSE, set the Gate.ObjectServerB.SAF property to FALSE, and restart
the gateway.
Related reference:
“Bidirectional gateway properties” on page 25
“Unidirectional gateway properties” on page 19

Chapter 2. Configuring properties 11

Configuring resynchronization
Use the gateway properties to specify how the gateway resynchronizes with its
target ObjectServers. You can configure resynchronization for both bidirectional
and unidirectional ObjectServer Gateways.
Related tasks:
“Changing the buffer size” on page 7

Configuring resynchronization for unidirectional ObjectServer
Gateways

To specify how unidirectional gateways resynchronize with the ObjectServers, set
the resynchronization properties that are in the properties file. Unidirectional
ObjectServer Gateways have fewer resynchronization properties than bidirectional
ObjectServer Gateways.

To configure resynchronization, set the properties that are described in the
following table.

Table 1. Resynchronization properties and command line options of unidirectional
ObjectServer Gateways

Property name Command line option Description

Gate.Resync.Enable
boolean

-resyncenable boolean Use this property to specify that the
gateway uses resynchronization.

The default is TRUE.

Gate.Resync.Type string -resynctype string Use this property to specify the how
the gateway resynchronizes table data
between ObjectServers when the
gateway starts or restores a lost
connection. The gateway
resynchronizes the tables that are
defined in the table replication
definition file.

See the information that follows this
table for the values to which you can
set this property.

The default is NORMAL.

Gate.Resync.LockType
string

-resynclocktype string Use this property to specify the locking
option on the source and destination
ObjectServers while resynchronizing
events.

You have the following options:

v FULL: The gateway locks both the
source and target ObjectServers.

v PARTIAL: The gateway only locks the
destination ObjectServer.

v NONE: The gateway locks neither the
source nor the target ObjectServer.

The default is FULL.

You can set the Gate.Resync.Type property to one of the following values:

12 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

v NORMAL: For each table, the gateway deletes all the data from the slave
ObjectServer. Then, the gateway retransfers the full set of tables from the master
to the slave. With this type of resynchronization, the master and slave are fully
synchronized. However, table rows that are in the slave but not in the master are
lost. Additionally, if table rows are in the master and the slave, the copy of the
row that is on the master is retained on both the master and the slave. Any prior
updates to the row on the slave are lost.

v UPDATE: For each table, the gateway builds a cache that contains all rows in the
master and slave ObjectServers. Then, the gateway examines the contents of the
cache for each table and compares the row data from the master with the row
data from the slave. The data is resynchronized as follows:
– Rows in the slave that are also in the master are updated with the data from

the master, if the data in the master is different from the slave.
– Rows that are in the master but not in the slave are copied to the slave.
– Rows in the slave that are not in the master are retained.

With this type of resynchronization, no events are lost, but the master and slave
ObjectServers might not be fully synchronized.

v MINIMAL: This option behaves in the same way as UPDATE. In addition, events
(that is, rows in the alerts.status table) that are in the slave but not in the master
are marked for deletion. To mark these events for deletion, the gateway behaves
as follows:
1. For each row of the alerts.status table in the slave ObjectServer that is not in

the master, the OldRow field is set to 1.
2. The pass_deletes trigger runs on the slave ObjectServer and deletes all rows

in which the OldRow field is set to 1.

The benefit of a MINIMAL resynchronization is that the master and slave
ObjectServers are fully synchronized but less data is sent during the
resynchronization process. MINIMAL resynchronization is less data-intensive
because all the rows are not deleted and then recopied, unlike a NORMAL
resynchronization.

What to do next

After you edit the properties file, restart the gateway.
Related reference:
“Bidirectional gateway properties” on page 25
“Unidirectional gateway properties” on page 19

Configuring resynchronization for bidirectional ObjectServer
Gateways

To specify how bidirectional gateways resynchronize with the ObjectServers, set
the resynchronization properties that are in the properties file. Bidirectional
ObjectServer Gateways have more resynchronization properties than unidirectional
ObjectServer Gateways.

To configure resynchronization, set the properties that are described in the
following table.

Chapter 2. Configuring properties 13

Table 2. Resynchronization properties and command line options of bidirectional
ObjectServer Gateways

Property name Command line option Description

Gate.Resync.Enable
boolean

-resyncenable boolean Use this property to specify that the
gateway uses resynchronization.

The default is TRUE.

Gate.Resync.Master
string

-resyncmaster string Use this property to specify which
ObjectServer the gateway should
always treat as the master during
resynchronization.

Valid values are ObjectServerA and
ObjectServerB.

The default is "".
Note: If you omit this property, the
gateway always treats the ObjectServer
that has been running the longest as
the master.

Gate.Resync.Preferred
string

-resyncpreferred string Use this property to specify which
ObjectServer the gateway should treat
as the master during resynchronization
if the Gate.Resynch.Master has been
omitted and both ObjectServers have
been running for the same length of
time.

Valid values are ObjectServerA and
ObjectServerB.

The default is "".

Gate.Resync.Type string -resynctype string Use this property to specify the how
the gateway resynchronizes table data
between ObjectServers when the
gateway starts or restores a lost
connection. The gateway
resynchronizes the tables that are
defined in the table replication
definition file.

See the information that follows this
table for the values to which you can
set this property.

The default is NORMAL.

14 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 2. Resynchronization properties and command line options of bidirectional
ObjectServer Gateways (continued)

Property name Command line option Description

Gate.Resync.LockType
string

-resynclocktype string Use this property to specify the locking
option on the source and destination
ObjectServers while resynchronizing
events.

You have the following options:

v FULL: The gateway locks both the
source and target ObjectServers.

v PARTIAL: The gateway only locks the
destination ObjectServer.

v NONE: The gateway locks neither the
source nor the target ObjectServer.

The default is FULL.

You can set the Gate.Resync.Type property to one of the following values:
v NORMAL: For each table, the gateway deletes all the data from the slave

ObjectServer. Then, the gateway retransfers the full set of tables from the master
to the slave. With this type of resynchronization, the master and slave are fully
synchronized. However, table rows that are in the slave but not in the master are
lost. Additionally, if table rows are in the master and the slave, the copy of the
row that is on the master is retained on both the master and the slave. Any prior
updates to the row on the slave are lost.

v UPDATE: For each table, the gateway builds a cache that contains all rows in the
master and slave ObjectServers. Then, the gateway examines the contents of the
cache for each table and compares the row data from the master with the row
data from the slave. The data is resynchronized as follows:
– Rows in the slave that are also in the master are updated with the data from

the master, if the data in the master is different from the slave.
– Rows that are in the master but not in the slave are copied to the slave.
– Rows in the slave that are not in the master are retained.

With this type of resynchronization, no events are lost, but the master and slave
ObjectServers might not be fully synchronized.

v MINIMAL: This option behaves in the same way as UPDATE. In addition, events
(that is, rows in the alerts.status table) that are in the slave but not in the master
are marked for deletion. To mark these events for deletion, the gateway behaves
as follows:
1. For each row of the alerts.status table in the slave ObjectServer that is not in

the master, the OldRow field is set to 1.
2. The pass_deletes trigger runs on the slave ObjectServer and deletes all rows

in which the OldRow field is set to 1.

The benefit of a MINIMAL resynchronization is that the master and slave
ObjectServers are fully synchronized but less data is sent during the
resynchronization process. MINIMAL resynchronization is less data-intensive
because all the rows are not deleted and then recopied, unlike a NORMAL
resynchronization.

What to do next

After you edit the properties file, restart the gateway.

Chapter 2. Configuring properties 15

Related reference:
“Bidirectional gateway properties” on page 25
“Unidirectional gateway properties” on page 19

Generic ObjectServer Gateway properties
Certain properties are shared by unidirectional and bidirectional ObjectServer
Gateways.

For information about the generic gateway properties and Interprocess
Communication (IPC) properties, see the IBM Netcool/OMNIbus Probe and Gateway
Guide. The following table describes the properties that are shared by
unidirectional and bidirectional ObjectServer Gateways.

Table 3. Generic ObjectServer Gateway properties and command-line options

Property name Command line option Description

Gate.CacheHashTblSize
integer

-chashtblsize integer Use this property to specify
the size (in elements) that the
gateway allocates for the
hash table cache.

The default is 5023.

Gate.MapFile string -mapfile string Use this property to specify
the location of the map
definition file.

The default is
$OMNIHOME/gates/
objserv_uni/
objserv_uni.map for
unidirectional gateways and
$OMNIHOME/gates/
objserv_bi/objserv_bi.map
for bidirectional gateways.

Gate.StartupCmdFile string -startupcmdfile string Use this property to specify
the location of the startup
command file.

The default is
$OMNIHOME/objserv_uni/
objserv_uni.startup.cmd for
unidirectional gateways and
$OMNIHOME/objserv_bi/
objserv_bi.startup.cmd for
bidirectional gateways.

Gate.Transfer.
FailoverSyncRate integer

-fsyncrate integer Use this property to specify
the duration (in seconds) of
the failover synchronization.

The default is 60, which
means that. every 60
seconds, the gateway
transfers the contents of any
table defined for failover
synchronization from the
source ObjectServer to the
target ObjectServer.

16 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 3. Generic ObjectServer Gateway properties and command-line options (continued)

Property name Command line option Description

Gate.NGtkDebug boolean -ngtkdebug boolean Use this property to specify
whether the NGTK library
logs debug messages.

The default is TRUE.
Tip: Use the following
properties to specify which
debug messages are included
in the debug log file:

v Gate.Mapper.Debug

v Gate.Reader.Debug

v Gate.Writer.Debug

Gate.PAAware integer -paaware integer This property is reserved for
use by the Process Agent
(PA) and specifies whether
the gateway is PA aware. It
is included in the properties
file for information only. Do
not change this property.

The default is " ", which
means the gateway is not PA
aware.

Gate.PAAwareName string -paname string This property is reserved for
use by the Process Agent
(PA) and specifies the name
of the PA that controls the
gateway. It is included in the
properties file for
information only. Do not
change this property.

The default is " ", which
means no PA controls the
gateway.

Gate.UsePamAuth boolean -usepamauth boolean UNIX operating systems
only: Use this property to
specify whether PAM
authentication is used.

The default is FALSE.
Note: To run the gateway in
FIPS 140-2 mode, set this
property to TRUE.

Gate.UnixAdminGrp string -unixadmingroup string UNIX operating systems
only: Use this property to
specify the administration
group to which the gateway
must belong if standard
UNIX authentication is used.

The default is ncoadmin.

Chapter 2. Configuring properties 17

Table 3. Generic ObjectServer Gateway properties and command-line options (continued)

Property name Command line option Description

MaxLogFileSize integer -maxlogfilesize integer Use this property to specify
the size, in KB that the
gateway allocates for the log
file. When the log file
reaches this size, the gateway
renames the log file by
appending the name with
the characters .old and
creates a new log file.

The default is 1024.

OldTimeStamp boolean -oldtimestamp boolean Use this property to specify
old-style timestamp format
the gateway uses in the log
file. Options are as follows:

v TRUE: Specifies the
locale-specific timestamp
format that is used by
Tivoli Netcool/OMNIbus
V7.2.1 or earlier. For
example, dd/MM/YYYY
hh:mm:ss AM or dd/MM/YYYY
hh:mm:ss PM when the
locale is set to en_GB.

v FALSE: Displays the
timestamp in ISO 8601
format, which is
YYYY-MM-DDThh:mm:ss,
where T separates the date
and time, and hh is in
24-hour clock.

The default is FALSE.
Important: Do not set the
OldTimeStamp property to
TRUE when running in UTF-8
mode.

N/A -utf8enabled boolean

Gate.Mapper.Debug boolean -mapperdebug boolean Use this property to specify
whether the gateway
includes mapper debug
messages in the debug log.

The default is TRUE.

Gate.Mapper.Forward
HistoricDetails boolean

-mapperforhistdtls boolean Use this property to specify
whether the gateway
forwards all historic details
on converted update.

The default is FALSE.

Gate.Mapper.Forward
HistoricJournals boolean

-mapperforhistjrnl boolean Use this property to specify
whether the gateway
forwards all historic journals
on converted update.

The default is FALSE.

18 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Related concepts:
Chapter 4, “Additional gateway runtime commands,” on page 41

Unidirectional gateway properties
In addition to the generic ObjectServer Gateway properties, unidirectional
gateways have specific properties.

For information about the common properties and Interprocess Communication
(IPC) properties, see the IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide
SC14-7530. The following table describes the common gateway properties.

Table 4. Properties and command line options used by unidirectional gateways

Property name Command line option Description

Gate.Reader.
CommonNames string

-readercommonnames
string

If the gateway is connecting to an
ObjectServer using SSL, and the
Common Name field of the received
certificate does not match the name
specified by the Gate.Reader.Server
property (for example, in a failover
pair or a virtual server setting), use this
property to specify a comma-separated
list of acceptable SSL Common Names.

The default setting is to use the
Gate.Reader.Server property.

Gate.Reader.Debug
boolean

-readerdebug boolean Use this property to specify whether
the gateway includes gateway reader
debug messages in the debug log.

The default is TRUE.

Gate.Reader.
Description string

-readerdescription
string

Use this property to specify the
application description for the reader
connection. This description is used in
triggers and allows you to determine
which component of the gateway
attempted to perform an action.

The default is "Gateway Reader".

Gate.Reader.
DetailsTableName string

-readerdetailstblname
string

Use this property to specify the name
of the details table that the gateway
reads.

The default is alerts.details.

Gate.Reader.
FailbackEnabled boolean

-readerfailbackenabled
boolean

Use this property to specify failback for
this ObjectServer.

The default is TRUE.

Gate.Reader.
FailbackTimeout integer

-readerfailbacktimeout
integer

Use this property to specify the period
of time (in seconds) that the gateway
must wait before it enters failback
mode.

The default is 30.

Chapter 2. Configuring properties 19

Table 4. Properties and command line options used by unidirectional gateways (continued)

Property name Command line option Description

Gate.Reader.
IDUCFlushRate integer

-readeriducflushrate
integer

Use these properties to control how
often the gateway looks for changes in
the ObjectServer.

The default is 0.

If you leave the property set to 0 the
ObjectServer can notify the gateway
that changes are pending. If you need
the gateway to capture more detailed
changes to events, set the property to a
different value. If you set the property
to a value that is not 0, the load on the
ObjectServer might be increased.

For more information, see the
description of the Granularity
ObjectServer property in the IBM Tivoli
Netcool/OMNIbus Administration Guide.

Gate.Reader.
JournalTableName string

-readerjournaltblname
string

Use this property to specify the name
of the journal table that the gateway
reads.

The default is alerts.journal.

Gate.Reader.
LogOSSql boolean

-readerlogossql boolean Use this property to specify whether
the gateway logs all SQL commands
sent to the ObjectServer in debug
mode.

The default is FALSE.

Gate.Reader.
Password string

-readerpassword string Use this property to specify the
password associated with the user
specified by the Gate.Reader.Username
property.

The default is "".
Note: If the ObjectServer to which the
gateway reads/writes alerts is running
on IBM Tivoli Netcool/OMNIbus V7,
V7.1, V7.2 or V7.2.1, this password
must be encrypted by the nco_g_crypt
utility. If the ObjectServer from which
the gateway reads alerts is running
Tivoli Netcool/OMNIbus V7.2.1 in
FIPS 140-2 mode, this password must
be in plain text or encrypted by the
nco_aes_crypt utility. For more
information about the encryption
utilities, see the IBM Tivoli
Netcool/OMNIbus Administration Guide.

Gate.Reader.
ReconnectTimeout
integer

-readerreconntimeout
integer

Use this property to specify the time
(in seconds) between each reconnection
poll attempt that the gateway makes if
the connection to the ObjectServer is
lost.

The default is 30.

20 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 4. Properties and command line options used by unidirectional gateways (continued)

Property name Command line option Description

Gate.Reader.Server
string

-readerserver string Use this property to specify the name
of the ObjectServer from which the
gateway reads alerts.

The default is NCOMS.

Gate.Reader.
StatusTableName string

-readerstatustblname
string

Use this property to specify the name
of the status table that the gateway
reads.

The default is alerts.status.

Gate.Reader.
TblReplicateDefFile
string

-readertblrepdeffile
string

Use this property to specify the path to
the table replication definition file.

The default is $OMNIHOME/gates/
objserv_uni/
objserv_uni.reader.tblrep.def.

Gate.Reader.Username
string

-readerusername string Use this property to specify the
username that is used to authenticate
the ObjectServer connection.

The default is root.

Gate.Resync.Enable
boolean

-resyncenable boolean Use this property to make the gateway
resychronize the ObjectServers after the
gateway establishes or restablishes a
connection to both ObjectServers. For
more information, see “Configuring
resynchronization” on page 12.

The default is TRUE.

Gate.Resync.LockType
string

-resynclocktype string Use this property to specify the locking
option on the source and destination
ObjectServers while resynchronizing
events.

You have the following options:

v FULL: The gateway locks both the
source and target ObjectServers.

v PARTIAL: The gateway only locks the
destination ObjectServer.

v NONE: The gateway locks neither the
source nor the target ObjectServer.

The default is FULL.

Chapter 2. Configuring properties 21

Table 4. Properties and command line options used by unidirectional gateways (continued)

Property name Command line option Description

Gate.Resync.Type string -resynctype string Use this property to specify the how
the gateway resynchronizes table data
between ObjectServers when the
gateway starts or restores a lost
connection. The gateway
resynchronizes the tables that are
defined in the table replication
definition file.

For more information about the values
to which you can set this property, see
“Gate.Resync.Type options” on page
24.

The default is NORMAL.

Gate.Writer.Buffersize
integer

-writerbufsize integer Use these properties to specify the
maximum number of entries that the
gateway stores in the buffer for this
ObjectServer before flushing, if
buffering is enabled. The gateway
flushes the buffer when the end of a
batch of SQL statements has been
reached regardless of the buffer size.
This property can be used to fine-tune
the efficiency of the gateway.

The default is 25.

Gate.Writer.
CommonNames string

-writercommonnames
string

If the gateway is connecting to an
ObjectServer using SSL, and the
Common Name field of the received
certificate does not match the name
specified by the Gate.Writer.Server
property (for example, in a failover
pair or a virtual server setting), use this
property to specify a comma-separated
list of acceptable SSL Common Names.

The default setting is to use the
Gate.Writer.Server property.

Gate.Writer.Debug
boolean

-writerdebug boolean Use this property to specify whether
the gateway includes gateway writer
debug messages in the debug log.

The default is TRUE.

Gate.Writer.
Description string

-writerdescription
string

Use this property to specify the
application description for the writer
connection. This description is used in
triggers and allows you to determine
which component of the gateway
attempted to perform an action.

The default is "Gateway Writer".

Gate.Writer.Failback
Enabled boolean

-writerfailback
enabled boolean

Use this property to specify failback for
this ObjectServer.

The default is TRUE.

22 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 4. Properties and command line options used by unidirectional gateways (continued)

Property name Command line option Description

Gate.Writer.Failback
Timeout integer

-writerfailback
timeout integer

Use this property to specify the time
(in seconds) that the gateway allows
before checking for the return of the
master ObjectServer and failing back.

The default is 30.

Gate.Writer.LogOSSql
boolean

-writerlogossql boolean Use this property to specify whether
the gateway logs all SQL commands
sent to the ObjectServer in debug
mode.

The default is FALSE.

Gate.Writer.Password
string

-writerpassword string Use this property to specify the
password associated with the user
specified by the Gate.Writer.Username
property.

The default is "".
Note: If the ObjectServer to which the
gateway reads/writes alerts is running
on IBM Tivoli Netcool/OMNIbus V7,
V7.1, V7.2 or V7.2.1, this password
must be encrypted by the nco_g_crypt
utility. For more information about the
encryption utilities, see the IBM Tivoli
Netcool/OMNIbus Administration Guide.

Gate.Writer.
ReconnectTimeout
integer

-writerreconntimeout
integer

Use this property to specify the time
(in seconds) between each reconnection
poll attempt if the gateway loses the
connection to the ObjectServer.

The default is 30.

Gate.Writer.
RefreshCache
OnUpdate boolean

-writerrefcacheonupd
boolean

Use this property to specify whether
the hash table cache for this
ObjectServer is refreshed.

You have the following options:

v TRUE: The cache is resynchronized
with the target ObjectServer prior to
processing each collection of row
updates for a table in the current
IDUC window.

v FALSE: The gateway assumes that its
cache is accurate and does not
resynchronize it.

The default is TRUE.

Gate.Writer.SAF boolean -writersaf boolean Use this property to specify that the
gateway stores all table entries if the
destination ObjectServer is unavailable
and forwards them when the
ObjectServer becomes available again.

The default is FALSE.

Chapter 2. Configuring properties 23

Table 4. Properties and command line options used by unidirectional gateways (continued)

Property name Command line option Description

Gate.Writer.SAFFile
string

-writersaffile string Use this property to specify the name
of the file that the gateway uses to
store table entries while the destination
ObjectServer is unavailable.

The default is $OMNIHOME/var/
objserv_uni_NCO_GATE_Writer.store.
Note: This file is only used if the
Gate.Writer.SAF property is set to
TRUE.

Gate.Writer.Server
string

-writerserver string Use this property to specify the name
of the ObjectServer to which the
gateway writes alerts.

The default is REMOTE.

Gate.Writer.Username
string

-writerusername string Use this property to specify the
username that is used to authenticate
the ObjectServer connection. This
username is used to establish both the
writer's IDUC connection and the
subsidiary SQL command connection.

The default is root.

Gate.Writer.SAF
ReplayOnResync boolean

-writersafreplay
onresync boolean

Use this property to specify how
store-and-forward (SAF) replays on
resynchronization.

You have the following options:

v TRUE: SAF replays regardless of
whether Gate.Resync.Enable has
been set to TRUE.

v FALSE: SAF replays only when
Gate.Resync.Enable has been set to
FALSE.

The default is FALSE.

Gate.Writer.
UseBulkInsCmd boolean

-usebulkinscmd boolean Use this property to specify bulk
inserts for faster resynchronization.

You have the following options:

v TRUE: The gateway changes the
format of the insert statement to
enable the ObjectServer to process
bulk inserts more efficiently.

v FALSE: The gateway makes no
changes to the insert statement
before sending events to the
ObjectServer.

The default is FALSE.

Gate.Resync.Type options

You can set the Gate.Resync.Type property to one of the following values:

24 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

v NORMAL: For each table, the gateway deletes all the data from the slave
ObjectServer. Then, the gateway retransfers the full set of tables from the master
to the slave. With this type of resynchronization, the master and slave are fully
synchronized. However, table rows that are in the slave but not in the master are
lost. Additionally, if table rows are in the master and the slave, the copy of the
row that is on the master is retained on both the master and the slave. Any prior
updates to the row on the slave are lost.

v UPDATE: For each table, the gateway builds a cache that contains all rows in the
master and slave ObjectServers. Then, the gateway examines the contents of the
cache for each table and compares the row data from the master with the row
data from the slave. The data is resynchronized as follows:
– Rows in the slave that are also in the master are updated with the data from

the master, if the data in the master is different from the slave.
– Rows that are in the master but not in the slave are copied to the slave.
– Rows in the slave that are not in the master are retained.

With this type of resynchronization, no events are lost, but the master and slave
ObjectServers might not be fully synchronized.

v MINIMAL: This option behaves in the same way as UPDATE. In addition, events
(that is, rows in the alerts.status table) that are in the slave but not in the master
are marked for deletion. To mark these events for deletion, the gateway behaves
as follows:
1. For each row of the alerts.status table in the slave ObjectServer that is not in

the master, the OldRow field is set to 1.
2. The pass_deletes trigger runs on the slave ObjectServer and deletes all rows

in which the OldRow field is set to 1.

The benefit of a MINIMAL resynchronization is that the master and slave
ObjectServers are fully synchronized but less data is sent during the
resynchronization process. MINIMAL resynchronization is less data-intensive
because all the rows are not deleted and then recopied, unlike a NORMAL
resynchronization.

Bidirectional gateway properties
In addition to the generic ObjectServer Gateway properties, bidirectional gateways
have specific properties.

Table 5. Properties and command-line options used by bidirectional gateways

Property name Command-line option Description

Gate.ObjectServerA.
Buffersize integer

Gate.ObjectServerB.
Buffersize integer

-objectserverabufsize
integer

-objectserverbbufsize
integer

Use these properties to specify the
maximum number of entries that the
gateway stores in the buffer for this
ObjectServer before flushing, if buffering
is enabled. The gateway flushes the
buffer when the end of a batch of SQL
statements has been reached regardless
of the buffer size. This property can be
used to fine-tune the efficiency of the
gateway.

The default is 25.

Chapter 2. Configuring properties 25

Table 5. Properties and command-line options used by bidirectional gateways (continued)

Property name Command-line option Description

Gate.ObjectServerA.
CommonNames string

Gate.ObjectServerB.
CommonNames string

-objectservera
commonnames string

-objectserverb
commonnames string

If the gateway is connecting to an
ObjectServer using SSL, and the
Common Name field of the received
certificate does not match the name
specified by the
Gate.ObjectServerA.Server property or
Gate.ObjectServerB.Server (for
example, in a failover pair or a virtual
server setting), use these properties to
specify a comma-separated list of
acceptable SSL Common Names.

The default setting is to use the
Gate.ObjectServerA.Server or
Gate.ObjectServerB.Server property.

Gate.ObjectServerA.
Debug boolean

Gate.ObjectServerB.
Debug boolean

-objectserveradebug
boolean

-objectserverbdebug
boolean

Use these properties to specify whether
the gateway includes debug messages
for this ObjectServer in the gateway
debug log.

The default is TRUE.

Gate.ObjectServerA.
DeleteIfNoDedup
boolean

Gate.ObjectServerB.
DeleteIfNoDedup
boolean

-objectservera
delifnodedup boolean

-objectserverb
delifnodedup boolean

Use these properties to specify how the
gateway forwards deletes.

You have the following options:

v FALSE: The delete is always applied

v TRUE: The delete is not applied if the
event in the target server indicates
that the event has occurred again
since the delete was issued.

The default is FALSE.

Gate.ObjectServerA.
Description string

Gate.ObjectServerB.
Description string

-objectservera
description string

-objectserverb
description string

Use these properties to specify an
application description for the
connection to ObjectServer A. This
description is used in triggers and
allows you to determine which
component of the gateway attempted to
perform an action.

The default is "Gateway Reader/Writer".

In a bidirectional ObjectServer gateway
configuration, where the gateway
connects a primary ObjectServer and a
backup ObjectServer, set this property to
failover_gate.

Gate.ObjectServerA.
DetailsTableName string

Gate.ObjectServerB.
DetailsTableName string

-objectservera
detailstblname string

-objectserverb
detailstblname string

Use these properties to specify the name
of the details table that the gateway
reads.

The default is alerts.details.

26 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 5. Properties and command-line options used by bidirectional gateways (continued)

Property name Command-line option Description

Gate.ObjectServerA.
FailbackEnabled
boolean

Gate.ObjectServerB.
FailbackEnabled
boolean

-objectservera
failbackenabled
boolean

-objectserverb
failbackenabled
boolean

Use these properties to enable failback
for this ObjectServer.

The default is FALSE.

Gate.ObjectServerA.
FailbackTimeout integer

Gate.ObjectServerB.
FailbackTimeout integer

-objectservera
failbacktimeoutinteger

-objectserverb
failbacktimeoutinteger

Use these properties to specify the
period of time (in seconds) that the
gateway must wait before it checks
whether the master ObjectServer is back
up, so that the gateway can fail back to
the master ObjectServer.

The default is 30.

Gate.ObjectServerA.
IDUCFlushRate integer

Gate.ObjectServerB.
IDUCFlushRate integer

-objectservera
iducflushrate integer

-objectserverb
iducflushrate integer

Use these properties to control how
often the gateway looks for changes in
the ObjectServer.

The default is 0.

If you leave the property set to 0, the
ObjectServer can notify the gateway that
changes are pending. If you need the
gateway to capture more detailed
changes to events, set the property to a
different value. If you set the property
to a value that is not 0, the load on the
ObjectServer might be increased.

Gate.ObjectServerA.
JournalTableName
string

Gate.ObjectServerB.
JournalTableName
string

-objectservera
journaltblname string

-objectserverb
journaltblname string

Use these properties to specify the name
of the journal table that the gateway
reads.

The default is alerts.journal.

Gate.ObjectServerA.
LogOSSql boolean

Gate.ObjectServerB.
LogOSSql boolean

-objectservera
logossql boolean

-objectserverb
logossql boolean

Use these properties to specify whether
the gateway logs all SQL commands
sent to this ObjectServer in debug mode.

The default is FALSE.

Chapter 2. Configuring properties 27

Table 5. Properties and command-line options used by bidirectional gateways (continued)

Property name Command-line option Description

Gate.ObjectServerA.
Password string

Gate.ObjectServerB.
Password string

-objectservera
password string

-objectserverb
password string

Use these properties to specify the
password associated with the user
specified by the
Gate.ObjectServerA.Username property
or the Gate.ObjectServerB.Password
property.

The default is "".
Note: If the ObjectServer to which the
gateway reads/writes alerts is running
on IBM Tivoli Netcool/OMNIbus V7,
V7.1, V7.2 or V7.2.1, this password must
be encrypted by the nco_g_crypt utility.
If the ObjectServer from which the
gateway reads alerts is running Tivoli
Netcool/OMNIbus V7.2.1 in FIPS 140-2
mode, this password must be in plain
text or encrypted by the nco_aes_crypt
utility. For more information about the
encryption utilities, see the IBM Tivoli
Netcool/OMNIbus Administration Guide.

Gate.ObjectServerA.
ReconnectTimeout
integer

Gate.ObjectServerB.
ReconnectTimeout
integer

-objectservera
reconntimeout integer

-objectserverb
reconntimeout integer

Use these properties to specify the time,
in seconds, between each reconnection
poll attempt if the connection to this
ObjectServer is lost.

The default is 30.

Gate.ObjectServerA.
RefreshCacheOn
Update boolean

Gate.ObjectServerB.
RefreshCacheOn
Update boolean

-objectservera
refcacheonupd boolean

-objectserverb
refcacheonupd boolean

Use these properties to specify how the
hash table cache is refreshed for this
ObjectServer.

You have the following options:

v TRUE: The cache is resynchronized
with the target ObjectServer before
each collection of row updates for a
table in the current IDUC window is
processed

v FALSE: The gateway assumes that its
cache is accurate and does not
resynchronize it

The default is FALSE.

Gate.ObjectServerA.
SAF boolean

Gate.ObjectServerB.
SAF boolean

-objectserverasaf
boolean

-objectserverbsaf
boolean

Use these properties to specify whether
the gateway stores all changes if the
destination ObjectServer is unavailable
and to forward them when the
ObjectServer becomes available again.

The default is FALSE.

28 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 5. Properties and command-line options used by bidirectional gateways (continued)

Property name Command-line option Description

Gate.ObjectServerA.
SAFFile string

Gate.ObjectServerB.
SAFFile string

-objectserverasaffile
string

-objectserverbsaffile
string

Use these properties to specify the name
of the file in which the gateway stores
changes while the destination
ObjectServer is unavailable. The default
is as follows:

v For the Gate.ObjectServerA.SAFFile
property, the default is
$OMNIHOME/var/objserv_bi/
NCO_GATE_ObjectServerA.store.

v For the Gate.ObjectServerB.SAFFile,
property, the default is
$OMNIHOME/var/objserv_bi/
NCO_GATE_ObjectServerB.store.

This file is used only if the
Gate.ObjectServerA.SAF property or
Gate.ObjectServerB.SAF property is set
to TRUE.

Gate.ObjectServerA.
SAFReplayOnResync
boolean

Gate.ObjectServerB.
SAFReplayOnResync
boolean

-objectservera
safreplayonresync
boolean

-objectserverb
safreplayonresync
boolean

Use these properties to specify how
store-and-forward (SAF) file for
ObjectServerA replays before
resynchronization.

You have the following options:

v TRUE: SAF replays regardless of
whether Gate.Resync.Enable has been
set to TRUE.

v FALSE: SAF replays only when
Gate.Resync.Enable has been set to
FALSE

The default is FALSE.

Gate.ObjectServerA.
Server string

Gate.ObjectServerB.
Server string

-objectserveraserver
string-
objectserverbserver
string

Use these properties to specify the name
of the ObjectServer that the gateway
connects to.

The default is NCOMS.

Gate.ObjectServerA.
StatusTableName string

Gate.ObjectServerB.
StatusTableName string

-objectservera
statustblname string

-objectserverb
statustblname string

Use these properties to specify the name
of the status table that the gateway
reads.

The default is alerts.status.

Chapter 2. Configuring properties 29

Table 5. Properties and command-line options used by bidirectional gateways (continued)

Property name Command-line option Description

Gate.ObjectServerA.
TblReplicateDefFile
string

Gate.ObjectServerB.
TblReplicateDefFile
string

-objectservera
tblrepdeffile string

-objectserverb
tblrepdeffile string

Use these properties to specify the path
to the table replication definition file.

The default is as follows:.

v For the Gate.ObjectServerA.
TblReplicateDefFile property, the
default is $OMNIHOME/gates/
objserv_bi/objserv_bi.
objectservera.tblrep.def

v For the Gate.ObjectServerB.
TblReplicateDefFile property, the
default is $OMNIHOME/gates/
objserv_bi/objserv_bi.
objectservera.tblrep.def

Gate.ObjectServerA.
UseBulkInsCmd boolean

Gate.ObjectServerB.
UseBulkInsCmd boolean

-usebulkinscmd boolean

-usebulkinscmd boolean

Use these properties to specify bulk
inserts for faster resynchronization.

You have the following options:

v TRUE: The gateway changes the format
of the insert statement it sends to
ObjectServerA, which allows
ObjectServerA to process the inserts
more efficiently.

v FALSE: The gateway makes no changes
to the insert statement before sending
events to ObjectServerA.

The default is FALSE.

Gate.ObjectServerA.
Username string

Gate.ObjectServerB.
Username string

-objectservera
username string

-objectserverb
username string

Use these properties to specify the user
name that is used to authenticate the
connection to the ObjectServer.

The default is root.

Gate.Resync.Enable
boolean

-resyncenable boolean Use this property to make the gateway
resychronize the ObjectServers after the
gateway establishes or restablishes a
connection to both ObjectServers. For
more information, see “Configuring
resynchronization” on page 12.

The default is TRUE.

Gate.Resync.LockType
string

-resynclocktype string Use this property to specify the locking
option on the source and destination
ObjectServers while resynchronizing
events.

You have the following options:

v FULL: The gateway locks both the
source and target ObjectServers.

v PARTIAL: The gateway only locks the
destination ObjectServer.

v NONE: The gateway locks neither the
source nor the target ObjectServer.

The default is FULL.

30 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 5. Properties and command-line options used by bidirectional gateways (continued)

Property name Command-line option Description

Gate.Resync.Master
string

-resyncmaster string Use this property to specify which
ObjectServer the gateway uses as the
master during resynchronization. To use
the ObjectServer that has been running
the longest, leave the property as an
empty string. To use a named
ObjectServer, regardless of which
ObjectServer has been running the
longest, set the property to
ObjectServerA or ObjectServerB.

Gate.Resync.Preferred
string

-resyncpreferred
string

Use this property to specify which
ObjectServer the gateway uses as the
master during resynchronization if the
Gate.Resynch.Master is left empty and
both ObjectServers have been running
for the same length of time. To use a
named ObjectServer, set the property to
ObjectServerA or ObjectServerB.

Gate.Resync.Type string -resynctype string Use this property to specify the how the
gateway resynchronizes table data
between ObjectServers when the
gateway starts or restores a lost
connection. The gateway resynchronizes
the tables that are defined in the table
replication definition file.

For more information about the values
to which you can set this property, see
“Gate.Resync.Type options.”

The default is NORMAL.

Gate.Resync.Type options

You can set the Gate.Resync.Type property to one of the following values:
v NORMAL: For each table, the gateway deletes all the data from the slave

ObjectServer. Then, the gateway retransfers the full set of tables from the master
to the slave. With this type of resynchronization, the master and slave are fully
synchronized. However, table rows that are in the slave but not in the master are
lost. Additionally, if table rows are in the master and the slave, the copy of the
row that is on the master is retained on both the master and the slave. Any prior
updates to the row on the slave are lost.

v UPDATE: For each table, the gateway builds a cache that contains all rows in the
master and slave ObjectServers. Then, the gateway examines the contents of the
cache for each table and compares the row data from the master with the row
data from the slave. The data is resynchronized as follows:
– Rows in the slave that are also in the master are updated with the data from

the master, if the data in the master is different from the slave.
– Rows that are in the master but not in the slave are copied to the slave.
– Rows in the slave that are not in the master are retained.

With this type of resynchronization, no events are lost, but the master and slave
ObjectServers might not be fully synchronized.

Chapter 2. Configuring properties 31

v MINIMAL: This option behaves in the same way as UPDATE. In addition, events
(that is, rows in the alerts.status table) that are in the slave but not in the master
are marked for deletion. To mark these events for deletion, the gateway behaves
as follows:
1. For each row of the alerts.status table in the slave ObjectServer that is not in

the master, the OldRow field is set to 1.
2. The pass_deletes trigger runs on the slave ObjectServer and deletes all rows

in which the OldRow field is set to 1.

The benefit of a MINIMAL resynchronization is that the master and slave
ObjectServers are fully synchronized but less data is sent during the
resynchronization process. MINIMAL resynchronization is less data-intensive
because all the rows are not deleted and then recopied, unlike a NORMAL
resynchronization.

32 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Chapter 3. ObjectServer Gateway mapping

The gateway can replicate any table in the ObjectServer. To do this, the gateway
maps data to the appropriate fields in the ObjectServer using a map definition file.

To replicate user related system tables, for example, SecurityUsers, SecurityGroups,
SecurityRoles, SecurityRoleGrants, and SecurityGroupMembers, include details of
these mappings in the map file.

The path of the map definition file is determined by the Gate.Mapfile property in
the properties file.

The gateway reads this table only at startup. If you edit this table while the
gateway is running, restart the gateway so that the changes take effect.

The following map definition file conversion functions can be used in the map
definition file:
v TO_STRING (<column_name>)
v TO_INTEGER (<column_name>)
v TO_TIME (<column_name>)

Syntax

Mappings for use with the ObjectServer writer must adhere to the following
syntax:
CREATE MAPPING mappingname
(
’dest_fieldname’ = ’@src_fieldname’ | simple_expression | attribute
[ON INSERT ONLY] [CONVERT TO type] [NOT NULL ’@src_fieldname’],
...
) ;

Where:
v mappingname is the name of the mapping to be created.
v dest_fieldname is the name of the field to be written in the destination

ObjectServer.
v src_fieldname is the name of a field in the ObjectServer alerts.status table.
v simple_expression is a string, boolean or integer; or sequence of strings or integers

joined by the operators +, -, *, /. All operators concatenate strings. All operators
work from left to right when operating on integers.

v attribute is an attribute name.

The following commands are optional:

ON INSERT ONLY
Controls the updating of the field during the life of the alert. If you omit this
command, the field is updated when any change in the state of the alert
occurs. If you include this command, the field is created once for the alert, but
is never updated. Use this command only when setting the values of variables.

© Copyright IBM Corp. 1996, 2012 33

CONVERT TO
Defines a forced conversion if a source field may not match the type of the
destination field. Possible options are INTEGER, STRING, or DATE.

NOT NULL
Provides an alterative value that is used if the source value is zero or the
empty string. The alterative value can be a column or constant, but not an
expression

Mapping attributes
You use attribute names to include additional data in mapping definitions. You can
specify two types of attribute: cache value access attributes or dynamic attributes.

Cache value access attributes

The gateway uses cache value attributes to access values that are stored in the
cross-reference cache. The following table describes the cache value attributes that
can be used in mapping definitions.

Table 6. Cache value access attributes

Attribute name Description

STATUS.SERIAL Cached serial number for the status table row that is
associated with the current journal or details table
row.

STATUS.SERVER_SERIAL Cached server serial number for the status table row
that is associated with the current journal or details
table row.

STATUS.SERVER_NAME Cached server name for the status table row that is
associated with the current journal or details table
row.

STATUS.IDENTIFIER Cached identifier for the status table row that is
associated with the current journal or details table
row.

JOURNAL.SERIAL Cached serial number of the journal table row.

DETAILS.IDENTIFIER Cached identifier of the details table row.

Dynamic attributes

Dynamic attributes enable the gateway to access dynamic values that are
automatically generated by the gateway. The following table describes the dynamic
attributes that can be used in mapping definitions.

Table 7. Dynamic attributes

Attribute name Description

ACTION_CODE This attribute displays a single character string that
specifies the type of operation performed. Valid
values are:

v I: Insert

v U: Update

v D : Delete

ACTION_TIME This attribute displays the time in UTC that the
action occurred.

34 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 7. Dynamic attributes (continued)

Attribute name Description

DELETEDAT This attribute displays the date on which the row
was deleted, if applicable.

Example mapping
Mappings define how the gateways replicate tables by assigning data to
appropriate fields in the ObjectServer.

The following example shows the mappings for the ObjectServer tables into which
the gateway writes. In this example, the fields on the left side of the equals sign
(=) are the target ObjectServer (ObjectServer B) and the fields on the right side of
the equals sign are the source ObjectServer (ObjectServer A).
CREATE MAPPING StatusMap
(
’Identifier’ = ’@Identifier’ON INSERT ONLY,
’Node’ = ’@Node’ ON INSERT ONLY,
’NodeAlias’ = ’@NodeAlias’ ON INSERT ONLY NOTNULL ’@Node’,
’Manager’ = ’@Manager’ ON INSERT ONLY,
’Agent’ = ’@Agent’ ON INSERT ONLY,
’AlertGroup’ = ’@AlertGroup’ ON INSERT ONLY,
’AlertKey’ = ’@AlertKey’ ON INSERT ONLY,
’Severity’ = ’@Severity’,
’Summary’ = ’@Summary’,
’StateChange’ = ’@StateChange’,
’FirstOccurrence’ = ’@FirstOccurrence’ ON INSERT ONLY,
’LastOccurrence’ = ’@LastOccurrence’,
’InternalLast’ = ’@InternalLast’,
’Poll’ = ’@Poll’ ON INSERT ONLY,
’Type’ = ’@Type’ ON INSERT ONLY,
’Tally’ = ’@Tally’,
’ProbeSubSecondId’ = ’@ProbeSubSecondId’,
’Class’ = ’@Class’ ON INSERT ONLY,
’Grade’ = ’@Grade’ ON INSERT ONLY,
’Location’ = ’@Location’ ON INSERT ONLY,
’OwnerUID’ = ’@OwnerUID’,
’OwnerGID’ = ’@OwnerGID’,
’Acknowledged’ = ’@Acknowledged’,
’BSM_Identity’ = ’@BSM_Identity’
’Flash’ = ’@Flash’,
’EventId’ = ’@EventId’ ON INSERT ONLY,
’ExpireTime’ = ’@ExpireTime’ ON INSERT ONLY,
’ProcessReq’ = ’@ProcessReq’,
’SuppressEscl’ = ’@SuppressEscl’,
’Customer’ = ’@Customer’ ON INSERT ONLY,
’Service’ = ’@Service’ ON INSERT ONLY,
’PhysicalSlot’ = ’@PhysicalSlot’ ON INSERT ONLY,
’PhysicalPort’ = ’@PhysicalPort’ ON INSERT ONLY,
’PhysicalCard’ = ’@PhysicalCard’ ON INSERT ONLY,
’TaskList’ = ’@TaskList’,
’NmosSerial’ = ’@NmosSerial’,
’NmosObjInst’ = ’@NmosObjInst’,
’NmosCauseType’ = ’@NmosCauseType’,
’NmosDomainName’ = ’@NmosDomainName’,
’NmosEntityId’ = ’@NmosEntityId’,
’NmosManagedStatus’ = ’@NmosManagedStatus’,
’NmosEventMap’ = ’@NmosEventMap’,
’LocalNodeAlias’ = ’@LocalNodeAlias’ ON INSERT ONLY,
’LocalPriObj’ = ’@LocalPriObj’ ON INSERT ONLY,
’LocalSecObj’ = ’@LocalSecObj’ ON INSERT ONLY,
’LocalRootObj’ = ’@LocalRootObj’ ON INSERT ONLY,

Chapter 3. ObjectServer Gateway mapping 35

’RemoteNodeAlias’ = ’@RemoteNodeAlias’ ON INSERT ONLY,
’RemotePriObj’ = ’@RemotePriObj’ ON INSERT ONLY,
’RemoteSecObj’ = ’@RemoteSecObj’ ON INSERT ONLY,
’RemoteRootObj’ = ’@RemoteRootObj’ ON INSERT ONLY,
’X733EventType’ = ’@X733EventType’ ON INSERT ONLY,
’X733ProbableCause’ = ’@X733ProbableCause’ ON INSERT ONLY,
’X733SpecificProb’ = ’@X733SpecificProb’ ON INSERT ONLY,
’X733CorrNotif’ = ’@X733CorrNotif’ ON INSERT ONLY,
’URL’ = ’@URL’ ON INSERT ONLY,
’ExtendedAttr’ = ’@ExtendedAttr’ ON INSERT ONLY,
’ServerName’ = ’@ServerName’ ON INSERT ONLY,
’ServerSerial’ = ’@ServerSerial’ ON INSERT ONLY
);

CREATE MAPPING JournalMap
(
’KeyField’ = TO_STRING(STATUS.SERIAL) + ":" +

TO_STRING(’@UID’) + ":" +
TO_STRING(’@Chrono’)ON INSERT ONLY,

’Serial’ = STATUS.SERIAL,
’Chrono’ = ’@Chrono’,
’UID’ = TO_INTEGER(’@UID’),
’Text1’ = ’@Text1’,
’Text2’ = ’@Text2’,
’Text3’ = ’@Text3’,
’Text4’ = ’@Text4’,
’Text5’ = ’@Text5’,
’Text6’ = ’@Text6’,
’Text7’ = ’@Text7’,
’Text8’ = ’@Text8’,
’Text9’ = ’@Text9’,
’Text10’ = ’@Text10’,
’Text11’ = ’@Text11’,
’Text12’ = ’@Text12’,
’Text13’ = ’@Text13’,
’Text14’ = ’@Text14’,
’Text15’ = ’@Text15’,
’Text16’ = ’@Text16’
);

CREATE MAPPING DetailsMap
(
’KeyField’ = ’@Identifier’ + ’####’ +

TO_STRING(’@Sequence’) ON INSERT ONLY,
’Identifier’ = ’@Identifier’,
’AttrVal’ = ’@AttrVal’,
’Sequence’ = ’@Sequence’,
’Name’ = ’@Name’,
’Detail’ = ’@Detail’
);

CREATE MAPPING IducMap
(
’ServerName’ = ’@ServerName’ ON INSERT ONLY,
’AppName’ = ’@AppName’,
’AppDesc’ = ’@AppDesc’ ON INSERT ONLY,
’ConnectionId’ = ’@ConnectionId’ ON INSERT ONLY,
’LastIducTime’ = ’@LastIducTime’
);

CREATE MAPPING SecurityUsersMap
(
’UserID’ = ’@UserID’ ON INSERT ONLY,

36 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

’UserName’ = ’@UserName’,
’SystemUser’ = ’@SystemUser’,
’FullName’ = ’@FullName’,
’Passwd’ = ’@Passwd’,
’UsePAM’ = ’@UsePAM’,
’Enabled’ = ’@Enabled’
);
#
#
CREATE MAPPING SecurityGroupsMap
(
’GroupID’ = ’@GroupID’ ON INSERT ONLY,
’GroupName’ = ’@GroupName’,
’SystemGroup’ = ’@SystemGroup’,
’Description’ = ’@Description’
);
#
#
CREATE MAPPING SecurityRolesMap
(
’RoleID’ = ’@RoleID’ ON INSERT ONLY,
’RoleName’ = ’@RoleName’,
’SystemRole’ = ’@SystemRole’,
’Description’ = ’@Description’,
’RoleScope’ = ’@RoleScope’
);
#
#
CREATE MAPPING SecurityRoleGrantsMap
(
’GranteeType’ = ’@GranteeType’ ON INSERT ONLY,
’GranteeID’ = ’@GranteeID’ ON INSERT ONLY,
’RoleID’ = ’@RoleID’ ON INSERT ONLY
);
#
#
CREATE MAPPING SecurityGroupMembersMap
(
’UserID’ = ’@UserID’ ON INSERT ONLY,
’GroupID’ = ’@GroupID’ON INSERT ONLY,
’Compat’ = ’@Compat’
);
#
#
CREATE MAPPING CatalogRestrictionFiltersMap
(
’RestrictionName’ = ’@RestrictionName’ ON INSERT ONLY,
’TableName’ = ’@TableName’,
’DatabaseName’ = ’@DatabaseName’,
’ConditionText’ = ’@ConditionText’,
’CreationText’ = ’@CreationText’
);
#
#
CREATE MAPPING SecurityRestrictionFiltersMap
(
’GranteeType’ = ’@GranteeType’ ON INSERT ONLY,
’GranteeID’ = ’@GranteeID’ ON INSERT ONLY,
’RestrictionName’ = ’@RestrictionName’,
’DatabaseName’ = ’@DatabaseName’,
’TableName’ = ’@TableName’
);
#
#
CREATE MAPPING SecurityPermissionsMap
(
’ApplicationID’ = ’@ApplicationID’ ON INSERT ONLY,

Chapter 3. ObjectServer Gateway mapping 37

’ObjectType’ = ’@ObjectType’ ON INSERT ONLY,
’Object’ = ’@Object’ ON INSERT ONLY,
’GranteeType’ = ’@GranteeType’ ON INSERT ONLY,
’GranteeID’ = ’@GranteeID’ ON INSERT ONLY,
’Allows’ = ’@Allows’,
’Denies’ = ’@Denies’,
’GrantOptions’ = ’@GrantOptions’
);
#
#
CREATE MAPPING ToolsMenusMap
(
’MenuID’ = ’@MenuID’ ON INSERT ONLY,
’Name’ = ’@Name’,
’Owner’ = ’@Owner’,
’Enabled’ = ’@Enabled’
);
#

CREATE MAPPING ToolsMenuItemsMap
(
’KeyField’ = TO_STRING(’@MenuID’) + ":" +
TO_STRING(’@MenuItemID’)
ON INSERT ONLY,
’MenuID’ = ’@MenuID’ ON INSERT ONLY,
’MenuItemID’ = ’@MenuItemID’ ON INSERT ONLY,
’Title’ = ’@Title’,
’Description’ = ’@Description’,
’Enabled’ = ’@Enabled’,
’InvokeType’ = ’@InvokeType’,
’InvokeID’ = ’@InvokeID’,
’Position’ = ’@Position’,
’Accelerator’ = ’@Accelerator’
);
#
#
CREATE MAPPING ToolsActionsMap
(
’ActionID’ = ’@ActionID’ ON INSERT ONLY,
’Name’ = ’@Name’,
’Owner’ = ’@Owner’,
’Enabled’ = ’@Enabled’,
’Description1’ = ’@Description1’,
’Description2’ = ’@Description2’,
’Description3’ = ’@Description3’,
’Description4’ = ’@Description4’,
’HasInternal’ = ’@HasInternal’,
’InternalEffect1’ = ’@InternalEffect1’,
’InternalEffect2’ = ’@InternalEffect2’,
’InternalEffect3’ = ’@InternalEffect3’,
’InternalEffect4’ = ’@InternalEffect4’,
’InternalForEach’ = ’@InternalForEach’,
’HasExternal’ = ’@HasExternal’,
’ExternalEffect1’ = ’@ExternalEffect1’,
’ExternalEffect2’ = ’@ExternalEffect2’,
’ExternalEffect3’ = ’@ExternalEffect3’,
’ExternalEffect4’ = ’@ExternalEffect4’,
’ExternalForEach’ = ’@ExternalForEach’,
’RedirectOut’ = ’@RedirectOut’,
’RedirectErr’ = ’@RedirectErr’,
’Platform’ = ’@Platform’,
’JournalText1’ = ’@JournalText1’,
’JournalText2’ = ’@JournalText2’,
’JournalText3’ = ’@JournalText3’,
’JournalText4’ = ’@JournalText4’,
’JournalForEach’ = ’@JournalForEach’,
’HasForcedJournal’ = ’@HasForcedJournal’

38 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

);
#
#
CREATE MAPPING ToolsActionAccessMap
(
’ActionAccessID’ = ’@ActionAccessID’ ON INSERT ONLY,
’ActionID’ = ’@ActionID’,
’GID’ = ’@GID’,
’ClassID’ = ’@ClassID’
);
#
#
CREATE MAPPING ToolsMenuDefsMap
(
’Name’ = ’@Name’ ON INSERT ONLY,
’DatabaseName’ = ’@DatabaseName’,
’TableName’ = ’@TableName’,
’ShowField’ = ’@ShowField’,
’AssignField’ = ’@AssignField’,
’OrderbyField’ = ’@OrderbyField’,
’WhereClause’ = ’@WhereClause’
);
#
CREATE MAPPING ToolsPromptDefsMap
(
’Name’ = ’@Name’ ON INSERT ONLY,
’Prompt’ = ’@Prompt’,
’Default’ = ’@Default’,
’Value’ = ’@Value’,
’Type’ = ’@Type’
);
#
#
CREATE MAPPING AlertsConversionsMap
(
’KeyField’ = ’@KeyField’ ON INSERT ONLY,
’Colname’ = ’@Colname’ ON INSERT ONLY,
’Value’ = ’@Value’ ON INSERT ONLY,
’Conversion’ = ’@Conversion’
);
#
CREATE MAPPING AlertsColVisualsMap
(
’Colname’ = ’@Colname’ ON INSERT ONLY,
’Title’ = ’@Title’,
’DefWidth’ = ’@DefWidth’,
’MaxWidth’ = ’@MaxWidth’,
’TitleJustify’ = ’@TitleJustify’,
’DataJustify’ = ’@DataJustify’
);
#
#
CREATE MAPPING AlertsColorsMap
(
’Severity’ = ’@Severity’ ON INSERT ONLY,
’AckedRed’ = ’@AckedRed’,
’AckedGreen’ = ’@AckedGreen’,
’AckedBlue’ = ’@AckedBlue’,
’UnackedRed’ = ’@UnackedRed’,
’UnackedGreen’ = ’@UnackedGreen’,
’UnackedBlue’ = ’@UnackedBlue’
);
#
#
CREATE MAPPING MasterServergroupsMap
(

Chapter 3. ObjectServer Gateway mapping 39

’ServerName’ =’@ServerName’ ON INSERT ONLY,
’GroupID’ =’@GroupID’,
’Weight’=’@Weight’
);

40 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Chapter 4. Additional gateway runtime commands

On UNIX operating systems, you can use the SQL Interactive Interface (the
nco_sql utility) to run commands against the gateway. In addition to the
ObjectServer SQL commands, you can run the following runtime commands
against the gateway: SHOW PROPS, GET CONFIG, and FAILOVER SYNCH. These
commands are in the gateway command file.

The following information is important for running SQL commands against the
gateway:
v To use the nco_sql utility against the gateway, the -server command-line option

must specify the gateway server name that is given in the data connections file,
omni.dat.

v If the Gate.UsePamAuth property is set to FALSE, the user that runs the gateway
process must have permission to read the user database. Depending on your
operating system configuration, the user needs permission to read etc/passwd,
etc/shadow, and etc/group.

v If the Gate.UsePamAuth property is set to TRUE, the nco_g_objserv_bi PAM
service or the nco_g_objserv_uni PAM service must be configured for the auth
and account modules.

v The user name that is used to start the nco_sql utility must be a UNIX user that
is specified by the Gate.UnixAdminGrp property.

Restriction: You cannot use the SQL Interactive Interface to run commands against
the gateway if your environment is in FIPS 140-2 mode.

For more information about the SQL Interactive Interface, see the IBM Tivoli
Netcool/OMNIbus Administration Guide.
Related reference:
“Generic ObjectServer Gateway properties” on page 16

GET CONFIG
Use the GET CONFIG command to display the current configuration of the gateway
by listing all properties and their values.

GET CONFIG is identical to the SHOW PROPS command; it may be removed from later
versions of the ObjectServer gateway.

Syntax

GET CONFIG ;

Example
GET CONFIG ;
go

© Copyright IBM Corp. 1996, 2012 41

SHOW PROPS
Use the SHOW PROPS command to display the current configuration of the gateway
by listing all properties and their values.

Syntax

SHOW PROPS ;

Example
SHOW PROPS ;
go

FAILOVER SYNCH
Use the FAILOVER SYNCH command to synchronize data between primary and
backup ObjectServers. The command specifies which master tables are transferred
during the data transfer operation.

For information about ObjectServer failover, see the IBM Tivoli Netcool/OMNIbus
Administration Guide (SC14-7527).

Syntax

FAILOVER_SYNC [ADD 'TABLENAME' TO | REMOVE 'TABLENAME' FROM
] WRITERNAME ;

Example
FAILOVER_SYNC ADD ’master.names’ TO ObjectServerA;
FAILOVER_SYNC ADD ’master.groups’TO ObjectServerA;
FAILOVER_SYNC ADD ’master.members’ TO ObjectServerA;
FAILOVER_SYNC ADD ’master.permissions’ TO ObjectServerA;
FAILOVER_SYNC ADD ’master.profiles’TO ObjectServerA;
FAILOVER_SYNC ADD ’tools.actions’ TO ObjectServerA;
FAILOVER_SYNC ADD ’tools.action_access’ TO ObjectServerA;
FAILOVER_SYNC ADD ’tools.menus’ TO ObjectServerA;
FAILOVER_SYNC ADD ’tools.menu_defs’ TO ObjectServerA;
FAILOVER_SYNC ADD ’tools.menu_items’ TO ObjectServerA;
FAILOVER_SYNC ADD ’tools.prompt_defs’TO ObjectServerA;
FAILOVER_SYNC ADD ’alerts.conversions’ TO ObjectServerA;
FAILOVER_SYNC ADD ’alerts.col_visuals’ TO ObjectServerA;
FAILOVER_SYNC ADD ’alerts.colors’ TO ObjectServerA;
FAILOVER_SYNC ADD ’alerts.objclass’ TO ObjectServerA;
FAILOVER_SYNC ADD ’alerts.objmenus’ TO ObjectServerA;
FAILOVER_SYNC ADD ’alerts.objmenuitems’TO ObjectServerA;

SET LOG LEVEL
The SET LOG LEVEL command can be used in the startup command file. The
command does not take effect immediately; an alternative is to configure the
properties file.

Syntax
SET LOG LEVEL TO FATAL|ERROR|WARNING|INFORMATION|DEBUG;

Example
SET LOG LEVEL TO ERROR ;
go

42 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Related tasks:
“Setting the level of debug messages” on page 6

Chapter 4. Additional gateway runtime commands 43

44 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Chapter 5. Table replication definition file

ObjectServer gateways can replicate the data in any table between ObjectServers.
Details of the tables to be replicated are stored in the table replication definition
file. The table replication definition file defines the tables in the source
ObjectServer that the ObjectServer Gateway replicates in the target ObjectServer.
The gateway reads this table only at startup. If you edit this table while the
gateway is running, restart the gateway so that the changes take effect.

For unidirectional gateways, the Gate.Reader.TblReplicateDefFile property
specifies the location of the table replication definition file.

For bidirectional gateways, the Gate.ObjectServerA.TblReplicateDefFile property
and the Gate.ObjectServerB.TblReplicateDefFile property specify the locations of
the files.

Syntax

The syntax of the table replication definition file is as follows:
REPLICATE {ALL | INSERTS, UPDATES, DELETES, FT_INSERTS, FT_UPDATES, FT_DELETES}
FROM TABLE sourcetable
USING MAP mapname
[FILTER WITH filter_clause] [INTO destinationtable] [ORDER BY order_string]
[ASC | DESC] [WITH NORESYNC]
[RESYNC DELETES FILTER condition]

[SET UPDTOINS CHECK TO {ENABLED|DISABLED|FORCED}]
[AFTER IDUC DO command]
[CACHE FILTER condition]

The following table describes the variable in the syntax.

Variable Description

sourcetable The table to be replicated in the target
ObjectServer.

mapname The map definition that the defines the
table.

filter_clause The filter the that gateway uses to select
rows for replicating. By default, filtering is
inclusive, which means that the filter sends
only those events that match the filter
definition.

To send events that do not match the filter
definition, precede the equals sign (=) with
an exclamation mark (!). For example, the
following filter clause sends all events
whose severity is not set to 5: FILTER with
’Severity !=5’.

destinationtable The table to receive the replicated table. If
this clause is omitted, the name of the
destination table is the same as the value of
sourcetable.

© Copyright IBM Corp. 1996, 2012 45

Variable Description

order_string A comma-separated list of column names.
Each column name can be followed by ASC
or DESC, to indicate whether the values in
the column are to be in ascending or
descending order.

condition The SQL condition that the gateway adds to
the SELECT statement when limiting the
cache entries that the gateway retrieves
during a cache refresh.

propertyname The property that the gateway uses to filter
the table data. Only rows that satisfy the
filter are replicated.

propertyvalue The argument to be used in the filter.

targettable The name of the table in which to replicate
the data.

delete_filter_clause The resynchronization delete filter that the
gateway issues to the target ObjectServer.

The following table describes the options for the REPLICATE command.

Option Description

ALL The equivalent of INSERTS, UPDATES,
DELETES.

WITH NORESYNC Optional: Specifies the tables that you do not
want to be resynchronized.

ORDER BY Optional: Specifies the order in which the
rows are returned to the gateway from the
ObjectServer. For each column, you can
specify how the rows are sorted.

v ASC: Specifies that the values in the
column are sorted in ascending order.

v DESC: Specifies that the values in the
column are sorted in descending order.

If you specify neither, ASC is used.

To define multiple columns for sorting,
specify a comma-separated list; for example:

ORDER BY ’Serial DESC, StateChange ACS’

RESYNC DELETE FILTER Optional: Defines a resynchronization
deletion filter that specifies which rows to
remove before insertion into the target table.
This filter is used when the rows in the
target and source tables are not an exact
match.

46 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Option Description

SET UPDTOINS CHECK TO Optional: allows you to configure the
update-to-insert functionality.

v ENABLED: The gateway performs normal
update-to-insert conversions. If an update
from the source ObjectServer contains a
table row that does not exist in the target
ObjectServer, the update is converted to
an insert, so that the table is repopulated
in the target ObjectServer. This setting is
the default.

v DISABLED: For each update received from
the source ObjectServer, the gateway
always sends an update to the destination
ObjectServer. If the update contains rows
that do not exist in the target, these rows
are dropped.

v FORCED: The gateway converts all updates
from the source ObjectServer to an insert
on the target ObjectServer. If the row
already exists in the target ObjectServer,
the row is deduplicated. This behavior is
identical to the behavior of probes.

AFTER IDUC DO Optional: Specifies a column and associated
value that the gateway applies to all rows
that are inserted, updated, or deleted.

CACHE FILTER Optional: Reduces the amount of data that
the gateway retrieves during a unidirectional
gateway cache refresh. The condition is
added to the end of the select statement that
it uses to retrieve cache entries.

If you want to use the CACHE FILTER
option, it must be the last entry in the table
replication definition.

Effects of delete forwarding on memory size
The memory usage of the gateway can be affected by whether you enable or
disable delete forwarding.

The following table describes the effects on memory of enabling or disabling delete
forwarding.

Table 8. Effects of memory of delete forwarding

Status of delete forwarding Sample command Effect on memory

Enabled REPLICATE INSERTS,
UPDATES

If the target ObjectServer is
not fast enough to keep up
with the flow of data that is
sent to it, the memory usage
of the gateway increases.

Chapter 5. Table replication definition file 47

Table 8. Effects of memory of delete forwarding (continued)

Status of delete forwarding Sample command Effect on memory

Disabled REPLICATE ALL The gateway mapper drops
the deletion details and does
not pass them to the writer.
To stop the entries for the
deleted rows from remaining
in the cache, the gateway
mapper acts on behalf of the
gateway writer by deleting
the entries for deleted rows
from the cache of the target
ObjectServer. This behavior
helps to keep memory usage
stable.

Example table replication definition file
The table replication definition file defines how the ObjectServer gateway replicates
tables between the source and target ObjectServers. Use this example to familiarize
yourself with how the file works.

The following example shows a table replication definition file:
REPLICATE INSERT, DELETE FROM TABLE ’alerts.status’
USING MAP ’StatusMap’
ORDER BY ’Serial ASC’
FILTER WITH ’Severity=!5’
SET UPDTOINS CHECK TO FORCED
AFTER IDUC DO ’Location=\’PASSED BY GW\’’
CACHE FILTER ’ServerName IN (\’NCOMBS_P\’,\’NCOMBS_B\’)’;

REPLICATE ALL FROM TABLE ’alerts.journal’
USING MAP ’JournalMap’;

REPLICATE ALL FROM TABLE ’alerts.details’
USING MAP ’DetailsMap’;

##
NOTE: If replication of the user related system tables is required, uncomment
the replication definitions below. The associated maps will also need to be
uncommented.
##

REPLICATE ALL FROM TABLE ’security.users’
USING MAP ’SecurityUsersMap’
INTO ’transfer.users’;
#
REPLICATE ALL FROM TABLE ’security.groups’
USING MAP ’SecurityGroupsMap’
INTO ’transfer.groups’;
#
REPLICATE ALL FROM TABLE ’security.roles’
USING MAP ’SecurityRolesMap’
INTO ’transfer.roles’;
#
REPLICATE ALL FROM TABLE ’security.role_grants’
USING MAP ’SecurityRoleGrantsMap’
INTO ’transfer.role_grants’;

48 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

#
REPLICATE ALL FROM TABLE ’security.group_members’
USING MAP ’SecurityGroupMembersMap’
INTO ’transfer.group_members’;

Chapter 5. Table replication definition file 49

50 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM® may not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2012 51

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
958/NH04
IBM Centre, St Leonards
601 Pacific Hwy
St Leonards, NSW, 2069
Australia

IBM Corporation
896471/H128B
76 Upper Ground
London SE1 9PZ
United Kingdom

IBM Corporation
JBF1/SOM1
294 Route 100
Somers, NY, 10589-0100
United States of America

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

52 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Portions of this product include software developed by Daniel Veillard.
v libxml2-2.7.8

The libxml2-2.7.8 software is distributed according to the following license
agreement:
© Copyright 1998-2003 Daniel Veillard.
All Rights Reserved. Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE DANIEL VEILLARD BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Daniel Veillard shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization from him.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
AIX®, IBM, the IBM logo, ibm.com®, Netcool®, Netcool/OMNIbus, and Tivoli® are
trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

Adobe, Acrobat, Portable Document Format (PDF), PostScript, and all Adobe-based
trademarks are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States, other countries, or both.

Notices 53

Java™ and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

54 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Index

A
attributes, cache value access 34
attributes, dynamic 34
attributes, mapping 34

B
bidirectional ObjectServer gateway

configuration
common gateway properties 25

description 1
example 1
information flow 1

C
cache value access attributes 34
command

FAILOVER SYNCH 42
GET CONFIG 41
nco_sql 41
SHOW PROPS 42

command file, startup 41
command line options

bidirectional gateway
common gateway properties 25

unidirectional gateway
common gateway properties 19

commands 41
configuration

common gateway properties
bidirectional gateway 25
unidirectional gateway 19

conversion functions 33

D
deletion filter, resynchronization 45
dynamic attributes 34

E
example table replication definition

file 48

F
failover 42
FAILOVER SYNCH command 42
file, map definition 33, 35
file, table replication definition 45

G
gateway mapping, ObjectServer 33
GET CONFIG command 41

M
map definition file 33, 35
map definition file conversion

functions 33
mapper 3
mapping attributes 34
mapping, ObjectServer gateway 33

N
nco_sql command 41

O
ObjectServer

backup 1
failover pair 1

ObjectServer failover 42
ObjectServer gateway

bidirectional 1
common gateway properties 25

description 1
example mapping 35
licensing 1
mapping 33
summary 1
unidirectional 3

common gateway properties 19
uses 1

ObjectServers, primary and backup 42

P
platforms, supported 1
primary and backup ObjectServers 42

R
reader 3
reader/writer 1
readers 1
replication, table 45
resynchronization deletion filter 45

S
SHOW PROPS command 42
startup command file 41
supported platforms 1

T
table replication 45
table replication definition file 45
table replication definition file,

example 48

U
unidirectional ObjectServer gateway

configuration
common gateway properties 19

description 3
example 3
information flow 3

update-to-insert 45

W
writer 3
writers 1

© Copyright IBM Corp. 1996, 2012 55

56 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

����

Printed in USA

SC14-7531-00

	Contents
	Chapter 1. ObjectServer Gateways
	Bidirectional ObjectServer Gateways
	Unidirectional ObjectServer Gateways

	Running ObjectServer Gateways

	Chapter 2. Configuring ObjectServer Gateway properties
	Controlling the size of the cache
	Setting the level of debug messages
	Checking whether the gateway runs under process control
	Changing the buffer size
	Changing the authentication mechanism
	Connecting to secure ObjectServers
	Resynchronizing security data with secure ObjectServers
	Configuring failback operations
	Configuring failback operations for unidirectional ObjectServer Gateways
	Configuring failback operations for bidirectional ObjectServer Gateways

	Configuring store-and-forward operations
	Configuring store-and-forward operations for unidirectional ObjectServer Gateways
	Configuring store-and-forward operations for bidirectional ObjectServer Gateways

	Configuring resynchronization
	Configuring resynchronization for unidirectional ObjectServer Gateways
	Configuring resynchronization for bidirectional ObjectServer Gateways

	Generic ObjectServer Gateway properties
	Unidirectional gateway properties
	Bidirectional gateway properties

	Chapter 3. ObjectServer Gateway mapping
	Mapping attributes
	Example mapping

	Chapter 4. Additional gateway runtime commands
	GET CONFIG
	SHOW PROPS
	FAILOVER SYNCH
	SET LOG LEVEL

	Chapter 5. Table replication definition file
	Effects of delete forwarding on memory size
	Example table replication definition file

	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	M
	N
	O
	P
	R
	S
	T
	U
	W

